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PREFACE

This memorandum was produced as part of a program in

group judgment technology conducted for the Behavioral

Sciences Office of the Advanced Research Projects Agency.

For many military problems, the best information available

is the judgment of knowledgeable individuals. This is es-

pecially true in the assessment of long-range technological

developments, and the evaluation of long-range future

threats. Thus the military has an important stake in

ensuring that the procedures used for obtaining judgments

are adequately designed to elicit the most accurate esti-

mates possible from the co-munity of experts.

By their very nature, these estimates are uncertain;

therefore, it seems reasonable that they should be couched

in probabilistic terms. This memorandum discusses ways in

which the incentive system imposed on experts may be struc-

tured so as to induce the best possible performance in pro-

babilistic forecasts, and briefly touches on ways in which

such forecasts may be combined into consensus forecasts.

Related material may be found in RM-5888-PR, RM-5957-PR,

RM-6115-PR, and RN-6118-PR.
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SUMMARY

I• S wourhwhiie, when asking groups of experts for
forecasts of politics!, enonn-m4c or m-litary evcnts, to

occasionally require them to put their forecasts in proba-

bilistic terms.

The advantages of such an approach are as follows:

(a) It provides a concise expression of sub-

Jective uncertainty.

(b) It provides an operational self-rating as

to the degree of confidence to be placed in the forecast.

(c) It is readily usable in decision-theoretic

models.

(d) It is easily combined with other forecasts

couched in similar terms.

To induce accurate forecasts, it seems reascnable to re-

ward these experts by a scheme related to the extent to which

their forecasts "come true." Such a scheme must be care-

fully chosen lest it contain built-in incentives to exag-

gerate or to understate probabilities. Systems which are

free of distorting incentives are called "reproducing scoring

systems"; such systems exist for both predictions relating

to discrete alternatives and predictions couched in terms

of continuous distributions. Reproducing scoring systems

have been applied to weather forecasts and classroom tests.

Their application to political, military, and economic fore-

casts, however, may give rise to the following problems:
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(a) Forecasters may not attempt to maximize their

expected gains.

(b) Conflict of intreRNt- ern pollut-P Rirh a sys%-

tem as it can any other.

(c) A great many forecasts must be considered

before a reproducing scoring system will reliably distin-

guish accurate from inaccurate forecasters.

Examination of the advantages and disadvantages of

various probabilistic scoring systems is a fit subject for

experimental investigation; such experiments are now being

designed and will be reported in due course.
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1. WHY PUT FORECASTS IN PROBABILISTIC TERM?.

Almost every decision we make, in private or in public

,lf, is 1HIPniuiLly based on forecasts ot tuture events

and conditions. Naturally we are willing, therefore, to

put considerable effort into various types of forecasting

and to consult experts in various fields in order to im-

prove our knowledge of the likely course of events in the

future. Everyone recognizes that the future is uncertain,

however, and thus it wuuld seem very natural for forecasts

to be generally cast in probabilistic terms. For example,

in forecasting the results of the 1968 presidential elec-

tion one might have said "Nixon .60; Humphrey .38; Wallace

.02," or some similar apportionment of probabilities.

This quantitative type of forecast has several obvious

advantages:

(a) It provides a concise expression of subjective

uncertainty.

(b) It provides an operational self-rating as to the

degree of confidence to be placed in the forecast. Some-

one who has not studied the electorate carefully will be

more likely to smear his probability assignment over all

possible alternatives than someone who has a deeper know-

ledge of the forces at work.

(c) It provides a forecast which is readily usable

by those using the tools of decision theory in choosing

between alternative courses of action.

I _ ____ __ _
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(d) It provides a forecast which may be easily com-

bined with other people's forecasts enu'h~e Ii t4-m e_-k

terms. There are many ways in which this may be done.

The most obvious method is simply to average the probabili-

ties ascribed to each alternative by the set of forecasters.

Edwards and Phillips8 have found that in the cases they

examined subjects tended to give more accurate probability

estimates if asked for odds rather than probabilities. In

a personal communication, Edwards has suggested using the

mean of the logarithms of the odds as a good way of comr-

bining a collection of probability estimates. A method of

Eidenberg and Gale 9 ' 16 takes as the consensus the odds

which would be arrived at if the forecasters were allowed

to place bets on the alternatives as at a race track.

These three methods may give quite different results: If

two forecasters ascribe probabilities to two alternatives,

and one ascribes probabilities (.5, .5) while the other

ascribes probabilities (.1, .9), then the various consensus

algorithms give the following results:

Alternative 1 Alternative 2
Parimutuel method .5 .5
Average probability method .3 .7

Mean log odds method .25 .75

The question of which consensus technique is most appro-

priate is analogous to the question of which measure of
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central tendency (mean, mode, or median) for a body of data

is most appropriate. But it In a aiieptinn whi-h 1-nn be U
addressed, experimentally and theoretically, with precision.

Contrast this with the problem of creating a consensus

out of a handful of the essays normally prcduced as fore-

casts by political pundits.

These advantages seem so overwhelming that it is some-

what surprising how few forecasts are actually put in terms

of explicit probabilities. There must, therefore, be

factors which militate against putting forecasts in such

terms. Some of these factors may be the following:

(a) Forecasters may be highly knowledgeable in their

field of expertise, but ignorant of the language of pro-

babi]ities. The world is full of otherwise intelligent

people who think that chuck-a-luck is a fair game, and

who have very little skill at expressing their expectations

in terms of probabilities. Numerous psychological experi-

ments have exposed the difficulty ,ith which most people

handle probability concepts. For example, Edwards7 has

found that most people do not "understand" Bayes' theorem,

in the sense that they will not change prior subjective

p probabilities as much as they should in response to new

evidence; that is, they are too conservative. On the other

hand, come unpublished experiments of Dalkey and Cochran

indicate that students overstate their confidence that

given pairs of words are synonyms or antonyms.

io od
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(b) Desire for vagueness may afflict some forecasters

Y, J.. t it: v cc Zorcune-teiiers, wi.sh to make "prophecies"

which appear to have content bhti which a.ctuel!y -.il! be

"proved correct" independently of the actual course of

events. Vagueness may also be a bureaucratic necessity

at times. For example, a National Intelligence Estimate

ordinarily represents a consensus between State, the CIA, DIA,

AEC, and FBI. Ambiguous verbal formulas are sometimes

required in order to produce a document on which all these

agencies can agree.

(c) Users may p:!es-sure forecasters to come out flatly

behind one alternative or another. To some extent this may

be a maneuver designed to counter the forecaster's desire

for vagueness; on the other hand, it may be related to a

failure to realize that an honest probabilistic forecast

gives considerably more information about a forecaster's

views than simply naming the single alternative which he

considers most likely. Furthermore, good planning should

take into account all reasonable contingencies rather than

just the single most likely one.

(d) Epistemological difficulties arise when you speak

of the "probability" of an inherently unique event. The

frequentist notion of probability propounded by logical

positivists such o Von Mises can give meaning to concepts

such as "The probability that Nixon will win the 1968 pre-

sidential election" only by means of a very tortured con-

L-
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struction. The Von Mises notion of probability is. in fact.

not as mathematically precise as it might at first appear

but a version of it can be made precise with the aid
of recursive function theory (see, for example, DiPaola. 6

It would be false sophistication, however, for one to be

inhibited from using the language of probability in the way

in which it is used daily by actuaries and gamblers simply

because a particular approach to the foundations of proba-

bility has difficulty in accounting for such usage.

(e) Desire for credit, in a sense the opposite to the

desire for vagueness, may influence forecasters to make

specific rather than probabilistic predictions. If you

predict Nixon will win the election, you will be proved

right or wrong by the event. If you say Nixon has a .6

chance of winning, what will the actual event prove about

your forecast?

The first three factors above are, of course, problems

with forecasters and users rather than problems with fore-

casts. These difficulties can be removed by merely seeing

to it that human beings become more intelligent and more

virtuous. The fourth difficulty, the epistemological

question, is a deep, complex matter about which reasonable

men may differ. It is a problem of rather abstract philo-

sophy and to leal with it adequately would require a lengthy

tract. The fifth problem is the subject of this paper;

how should you apportion credit to probability forecasters
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after the fact? We shall champion a class of scoring

systems called "reproducing scoring systems."
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2. WIY REPRODUCING SCORING SYSTEMS?

2.1 What Are Reproducing Scoring Systems?

Let us suppose that an expert reports to you proba-

bilities r 1 , r 2 , ... , rn that each of n mutually exclusive

alternatives is going to take place (and at least one of

them must take place, so that if the expert is internally
consistent Zri - 1). You do not pay him at once for this

forecast, but wait until one of the alternatives (say,

alternative i) actually takes place, and then pay him an

amount

S~~fi(rl, r2,.. r)

The functions f ought to be chosen in such a way

that, if the expert truly believes that Pl' P22' "" Pn

are the probabilities of the event in question, then his

perception of the expected payoff from his prediction

ipifi(rl, r 2 , ... , rn)

will be a maximum for rl - p,, r 2 - P2 1 etc. If a reward

system ha., this property, it is called a "reproducing scor-

ing -ystem" because it gives the expert an incentive to

report his truo beliefs (to "reproduce" them).

We insist, therefore, that the maximum at ri - Pi be

a strict maximum (e.g., we do not call f 0 a "reproducing

i _ DI
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scoring system").

2.2 Why Use Reproducing Scoring Systems?

There are two basic reasons to use reproducing scoring

systems:

(a) So that the forecaster will provide you with a

true report of his judgments. Even if there is no overt,

explicit score being kept, the forecaster will perceive

that somehow or other his forecast will affect his personal

future in some way (otherwise he will be unwilling to put

any effort into arriving at a reasonable forecast); the

link which he perceives beLween his forecast and his per-

sonal fortunes is bound to have a strong influence on both

the amount of effort he puts into his forecast and also on

the content of the forecast. The use of a reproducing

scoring system is an attempt to explicitly structure this

link in such a way that it will influence the forecaster

to make a sincere effort to determine what is likely to

happen, and then accurately report his view to the user.

(b) So that, over the long term, you can sort out

better forecasters from poorer ones. It appears that today

forecasters are judged more on the quality of their writing

and on their political sense (what do people want to hear?)

than on the quality of their forecasts. A systematic

scoring system would provide an arena in which good fore-

casters could excel on the basis of how accurately they
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perceived the future rather than on the basis of "styling" I
and "catching the word market." As we shall see below,

however, there is a subtle conflict between this use

of reproducing scoring systems and the use given above.

2.3 Some Horrible Examples

The reader at this point may feel that the argu-

ments in favor of eliciting probabilistic forecasts and

scoring them in some explicit way are valid, but that

any "reasonable" scoring system "will do," and that it

is not necessary to use a reproducing scoring system.

In this section we will present three examples of "rea-

sonable" scoring systemi, which are not reproducing scor-

ing systems, and point out the distortions in forecasts which

which they will encourage.

(a) The simplest possible scoring system is to simply

take

fi(rl' r2 , '''' r) " ri

This scoring system means that the forecaster will maximize

his expected score by picking the outcome he considers

most likely, and claiming that he is certain it will take

place. That is,

V I
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1 rj Ly Vkj J

- 0 otherwise.

Over a period of time, then, this scoring system will tend

to benefit the incautious forecaster and penalize the fore-

caster who reports his true feelings.

(b) In some of Norm Dalkey's experiments with the

Delphi method, the respondents produced subjective pro-

bability distributions for a certain quantity whose true

value was known to the experimenters. The question arose

how to rate these probability distributions for accuracy,

and one suggestion was the following: given that the true

value was x and the probability density function submitted

by a respondent was r(y)dy, pick a suitable function P and

let the respondent's "score" be

f(r(.)) - 1 - � P(lx-yl)r(y)dy

D

where D is the domain over which r(y) is defined. Let us

suppose that p(x)dx is the probability density function

which the respondent "really" has in mind. Then he will

perceive hi8 expected score as being

E(f(r(.))) I i- f r(y) (D P(jx-yl)p(x)dx)dy

D D
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a function of y alone. Thus the respondent may maximize

his expected score by concentrating all the mass of r(y)dy

at the value of y which minimizes the quantity in curly

brackets. For example, if P(lx-yl) - Jx-yJ, the respondent

should concentrate r(y)dy at the median of his subjective
distribution; if P(lx - y12 he should concentrate

its mass at the mean. So this is another scoring scheme

which tends to favor the incautious 2orecaster. In fact,

example (a) above may be viewed as a special ca. - of this

example, with

p(li-il) -0 if i -j

-l ifi+j.

This scoring procedure was not, in fact, used in the

Dalkey experiments because its undesirable features were

recognized in time. But if it had been used it is easy to

imagine some of the erroneous conclusions it would have

engendered concerning the relationship between the spread of

subjective probability distribution and accuracy (they are

related, of course, but not as strongly as this scoring

system would have suggested).

(c) A scoring system which we shall call the "Colonel

Blotto scoring system" is as follows: suppose you have two

or more forecasters making predictions about which of n

I



-12-

mutually exclusive alternatives will take place. Award

one point to the forecaster who ascribes the highest pro-

bability to the event which actually takes place, and

nothing to the others. After a reasonable number of fore-

casts have been scored in this way, your best forecaster

will presumably have accumulated the greatest number of

points.

To see what is wrong with this scoring system let us

consider the following simple case: you have exactly two

forecasters and three equally likely alternatives. Suppose

forecaster #1 (correctly) ascribes probability 1/3 to each

alternative, while forecaster #2 (through either foolish-

ness or guile) ascribes probability 1/2 to each of the

first two alternatives and probability 0 to the third; then

the second (inaccurate) forecaster is twice as likely to

win the point as is the first (accurate) forecaster. If

the first forecaster guesses what kind of ascription the

second forecaster is making, he can switch the odds back

in his favor by ascribing (.6, .2, .2) to the three pos-

sible outcomes, and so on. The two players become locked

in the equivalent of a two-person, zero-sum, continuous

Colonel Blotto game with one another, and it becomes im-

possible to infer from their ascriptions what they actually

believe are the relative probabilities of the alternatives.

This game, by the way, was introduced by Emile Borel in
2

one of the earliest monographs on game theory. He con--
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Iside red it n vprv diffirtiiwr-m~a hiir qnlii-4nn ronc fniivneithirty years later by Oliver Gross.I11,12 An optimal stra-

tegy is the following: label the sides of an equilateral

triangle of unit area with the three alternatives under

consideration; inscribe a circle in the triangle and erect

a hemisphere upon it; choose a point at random on the hemi-

sphere and drop a perpendicular from it to the plane of the

triangle; ascribe to each diternative a probability equal

to the area of the triangle determined by the foot of the

perpendicular and the side corresponding to the alternat:ive

in question. Performing this ritual will protect you from

being outguessed by your opponent. But the probability

you ascribe to a given alternative has little to do with

your image of the true probability: In the case we have

been discussing it is equally likely to be any number be-

tween 0 and 2/3.
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3.1 Preliminaries

In principle, reproducing scoring systems are not

necessarily symmetric. That is, if you assign the same

probabilities to alternative #1 and alternative #2, your

payoff if #1 actually occurs is not necessarily the same

as it would be if #2 actually occurs. One could conceive

of applications in which this aisymmetry would be useful,

but in general it seems more reasonable to restrict our

attention to syrmnetric scoring schemes, in which the pay-

off depends only on the probability assigned to the alter-

native which takes place, rather than on the label attached

to that alternative. This restriction will also make our

mathematical symbolism considerably simpler. The modifi-

cations which would be required to extend our results to

asymmetric scoring systems will, in most instances, be

rather obvious.

Adding a constant factor to a reproducing scoring system

yields another reproducing scoring system. It is conven-

ient to normalize a scoring system (to be applied to n

alternatives) in such a way that the pay-off for assigning
1a probability of to the alternative which actually takes

place is zero. This makes a certain amount of heuristic

sense: If confronted with n alternatives about which you

know absolutely nothing, the "principle of equal ignorance"

suggests that you should assign equal probabilities to them
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S~zero.

In what follows, therefore, we shall assume (unless

the contrary is specifically stated) that any reproducing

serving system we mention is symmetric, and normalized so

that the payoff for assigning equal probabilities to all

alternatives is zero.

3.2 Two Alternatives

Let ui suppose we have two distinct alternatives, one

of which must occur and both of which cannot occur. The

expert whom we consult reports to us probability rl for the

first alternative and r 2 for the second. Logic compels him

to assign theRe -nbabilities in such a way that r + r 2 - 1.

We agree to pay him f(rl) Lf the first alternative comes

true, and f(r 2 ) - Q1l--rj) if the second comes true (a nega-

tive payment, as usual, corresponds to his paying us).

Let p1 and P2 represent the probabilities which, in his

heart, our expert actually ascribes to the two alternatives;

p1 and P2 may not be the same as the probabilities which

he reports to us. He will perceive his expected gain from

the exercise to be

G - plf(rI) + (l-p,)f(l-rI)

'£he essence of a reproducing scoring system is that

the expert should perceive his expected gain to be maxi-
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mized if he reports to us the probabilities which he actu-

ally ascribes to the events in question. If f is diffpr-LI
entiable, a necessary condition for this is the following

(in which we suppress subscripts for notational convenience):

(3.2.1) rf'(r) - (1-r)f'(1-r) 0 0 < r <1

Now define :p(r) as follows:

rf'(r 0 < r < 1

Since :•(l-r) - v(r) (l-r)f'(1-r) - rf'(r) = 0,

we may also write

and thus, since f 0,

(3.2.2) f(r) dt (t)dt + S(t)dtjt

We have shown that any differentiable reproducing

I. scoring function f(r) for two alternatives may be put in

the form of Eq. (3.2.2). In the next section we shall show

SIt is proved in App. A that f is monotone increasing;
thus it must be differentiable almost everywhere.
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that if ýp(x) is positive except on a set of measure zero,

",Lly fuUL.Ui1n defined as in Eq. (3.2.2) is a reproducing

scoring function.

3.3 The Gambling House Construction Method

Suppose our expert enters a gambling house in which

there are an infinite number of altruistic gamblers. Each

gambler corresponds to a point on the interval from zero

to one; the gambler corresponding to x is willing to accept

iAn infinitesimal positive wager cp(x)dx that alternative #1

will occur, and offers odds of one for x. That is to say,

if our expert loses the wager he loses cp(x)dx, while if he

wins the wager he wins P(x) dx - cp(x)dx.x

Obviously our expert will perceive it to be in his

interest to place bets with those gamblers (and only with

those gamblers) who correspond to x < pl; for he will feel

that all these wagers are at favorable or fair odds, while

any bets with gamblers corresponding to x > p1 would be

placed at odds which appear unfavorable to our expert. If

he then visits a second gambling house which is exactly

like the first except that the gamblers in the second house

accept wagers on the occurrLnce of alternative #2, then

it is easy to see that his net gain, if alternative #1

occurs, will be



g(pl) J .- co(x)dx - J (x)dx - J(x) dx

0 x 0 0

Payments Payments 'to Payments

from gamblers gamblers in to gamblers
in first first house in second
house house

This defines a symmetric reproducing scoring system,

but it offers better than zero payoff at p1 , p2 - •" To

normalize the system we must subtract a constant; this is

equivalent to making the lower limits on all the integrals

Sinstead of 0. Thus we are left with Eq. (3.2.2). In other

words, Eq. (3.2.2) "characterizes" oymmetric reproducing

scoring systems. This theorem was discovered independently

by Shuford, Albert and Massengill 1 8 aud by Aczel and

Pfanzagl. 1

This "gambling house" construction method has the very

desirable feature that it generalizes di-ectly to more than

two alternatives. The same discussion an we went through

above for two alternatives shows that, if p(x) i3,•y

tive function whatsoever, then the following is . . c-

ing scoring system for n alternatives:

(3.3.2) fi(rl,, r rn) - Widx (x)
x J-1 I

n n

When we are dealing with n alternatives and a symmet-

ric scoring system, we may write the scoring function in

L
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the form f(r,v), where r represents the probability ascribed

to the alt-& - a_ .Luaily occurs and v is some

symmetric function of the r, 'a (r.. of course, b'--cg the

probability ascribed to the ith alteriative). Let us look

at two specific reproducing scoring systems which are genr-

erated by Eq. (3.3.2).

(a) The quadratic scoring system. Let p(x) - 2x, and

we get

f(r,v) -2r v v, V 2

n imli

5
This scoring system was used by Bruno de Finetti in

a series of studies involving football forecasts. It may

be shown that, in the case n - 2, the quadratic scoring

system is the only one in which the difference between the

expected pay-off of a "perfect" expert and of a given

expert is a function only of the difference between the

"true" probability and the probability ascribed by the

given expert.*

(b) The logarithmic scoring system. Let cp(x) - 1,

and we get

f(r,v) - log(n'r)

We shall see in the next section that, for n > 2,

Si

uSe A uppe nd uuix uC. i u ui
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this is essentially the only diffzrztLzbie reprolucing

scoring system which has the property that the --yoff

depends only on the probability ascribed to the event

which actually occurs (and not on the probabilities ascribed

to events which do not occur). In other words, it is the

only f(r,v) which does not depend explicitly on v. This

fact was evidently first observed by A. H. Gleason (see 15),

but the only published proofs I have found are by Aczel and

Pfanzagl 1 and Shuford, Albert, and Massengill. 18

This scoring system relates in an interesting way to

information theory. An expert who reports a spectrum of

probabilities (rI, r 2 , ... , r) will assess his expected

payoff as

n
i. r i log (n. ri)

which is essentially a constant (logn) minus the entropy

of his partition. In other words, his expected payoff is

exactly the same as the amount by which he is able to

reduce the expected information in the event itself.

3.4 Many Alternatives

We demonstrated in Secs. 2 and 3 above that all

differentiable two-alternative reproducing scoring schemes

are generated by the "gambling house" method (Eq. (3.3.2)).

The following example shows that this may not be
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true for n-alternative schemes:

n

f(r,v) 'r v r 2 I

This is the so-called "spherical" scoring scheme which

was invented by Masanao Toda. 2 2  If n - 2 it is generated

by

x•x2 2 ]3/2") 2[x2 + (l-x)2

For n > 2, however, I have been unable to find a cp(x) which

will, when plugged into Eq. (3.3.2), give the required function.

Although we are not able to give a characterization

of differentiable n-alternative reproducing scoring systems

such as we gave for 2-alternative systems, we are able to

derive a useful necessary condition that such systems must

fulfill, analogous to Eq. (3.2.1). By taking appropriate

directional derivatives we are able to determine the fol-

lowing set of n equations which f(r,v) must satisfy:

n

3.4.1) ri Jrr r-r w i1, 2 ... , n

where w is a symmetric function of the r's. From this

n
That is, symmetric on the surface D ri

ii

2
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equation it is possible to deduce Gleason's result that I
the logarithmic scoring scheme is essentially the only one

in which the payoff depends only on the probability

assigned to the alternative which actually occurs. For if

f(r,v) is a function of r alone then

a- f 0
av

so we have

ri arir-ri

But the left-hand side is a function of r1 alone, while

the right-hand side is a symmetric function: The only

symmetric function (if n > 2) which does not depend on the

other r's is the constant function. Thus w - c and

f
8r r

From which it follows that f is a logarithmic function

of r.

The logarithmic reward function has the peculiarity

that, if the expert in question assigns zero probability

to an event which actually takes place, the penalty levied

against him is infinite. This may or may not seem
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inaDDrof• altp. * n ar_ a' 4 +- A -J .. ... . ......

et al., 18 recommend simply truncating the reward function

at some small c > 0 and giving the expert the same reward

for ri < e as he gets for ri - e. This reward structure
is not a reproducing scoring system for small values of r,

of course. Another approach which is more consistent with
the spirit of reproducing scoring systems is to use, in-

stead of the log generator ep(x) - 1, the following q:

(3.4.2) cp(t) - tKn t <
Kn

"- 1 elsewhere

K stands for some large constant. This cp leads to the

following pay-off function:

f(r, v) - log nr - v if r > 1
-Kn

- Knr - logK- - 1 v if r <

v - • [i1- ri~]

all i s.t. 2Kn
ri< 1

Kn*2

Thomas L. Hughes, former head of intelligence for
the U.S. State Department, tells the story of a certain
British intelligence officer who, upon his retirement in
1950 after forty-seven years of service reminisced:
"Year after year the worriers and fretters would come to
me with awful predictions of the outbreak of war. I deniedit each time. I was only wrong twice."
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It is easy to see that if there are no estimates less than

liKn, this payoft tunction is identicai with tne joga-

ri4-thmic one°

3.5 Continuous Cases

Let us suppose you are trying to elicit from. your ex-

perts an estimate of what the population of Uganda will

be in 1980. One way to proceed would be to ask the ex-

perts to estimate the probability that the population would

be less than 7 million, between 7 million and 8 million,

between 8 million and 9 million and so on. Unfortunately

the way in which you structure your alternatives may have

an undue influence on the experts' answers, and if you wish

to combine an opportunity for precision with a wide range

of possible answers the number of alternatives may become

impossibly large. A different approach which seems prefer-

able is to ask the experts directly to specify a probability

distribution over the possible future population of Uganda

in some way (possibly by askin, for percentile breaks, for

example) and then score this continuous distribution directly.

It appears that any nr-alternative reproducing scoring system

may be converted, by a limiting process as n becomes large,

into a scoring system for continuous distributions on the

real line. The details of the limiting process will differ

from case to case; we will discuss three examples.

(a) Quadratic Scoring System. Let us suppose that

the domain of possible answers is of length D, and is
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r(x) is an estimating prohability density function on D,

then the quadratic reward funct;ion with respect to this

partition would be (assuming r(x) is approximately con-

stant over each interval Ax)

3.5.1) f(xi)- 2r(x.)3x - )6x12 Ax

The last term in this expression, the only one which

depends explicitly on D, is only a constant intended to

normalize the reward function so that assigning equal

probability to all alternatives gets reward zero. Since

in this case it is convenient to be noncomnmittal about

what is meant by "all alternatives" we will delete this

constant (this deletion does not, of course, destroy the

reproducing property of the quadratic scoring system).

For the reward function specified by Eq. (3.5.1) to remain

nonzero as Ax - 0, it is necessary to divide out 6x. The

resulting sequence of reward functions then approaches,

in the limit,

I2
(3.5.2) f(x) - 2r(x) J- j Ir(t)] dt

D

Let us illustrate the application of this scoring

system to two estimates of the population of Uganda in
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1980. buppose two experts Pre asked to estimate the popu-

.... ........... r.Epcrt numiber one gives the following

distribution:

1

rl(x) - 7 < x < 12

0 elsewhere

Suppose expert number two gives the following distri-

bution:

3
r 2 (x) - 9 < < 10

-5 8<x<9, 10 < x <

- 0 elsewhere

Then we can calculate their payoffs under various

contingencies in the following table:

TRUE VALUE PAYOFF TO EXPERT #1 PAYOFF TO EXPERT #2

x < 7 - .2 - .44

7 <x< 8 + .2 - .44

8<x<9 + .2 -. 04

9 < x < 10 + .2 + .76

10 < x < 1 + .2 -. 04
11 < x < 12 + .2- .•44

12 < x -2 -. 44

t
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Noce that although both experts assigned the same

probability to x falling between 8 and 9, expert #1 gets

a positive reward if that contingency comes to pass while

expert #2 gets a negative relward. The justification for

this is, of course, that expert #2 thought that x was much

more likely to fall between 9 and 10, and he "dropped a

bundle" betting on that. contingency.

(b) Spherical Scoring System. Under the assumptions

made above, ýhe spherical scheme would give us

r(xi)6x i
(3.5.3) f(xi) m _-

Er (xj) 2 Ax2

We ignore the constant term. The Ax's cancel one an-

other, but since the denominator becomes large as n -

we must divide the reward by l/x in order to keep it from

approaching zero as Ax - 0. We then have in the limit the

following scheme:

(3.5.4) f(x) - r(x)

Dlr (t)2 dt

Applying Eq. (3.5.4) tc the distribution given in the

previous example generates the following table:

L
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TRUE VALUE PAYOFF TO EXPERT ,1 PAYOFF TO EXPERT #2

x<7 0 0 I
7 < x < 8 .447 0

8 < x < 9 .447 .302

9 < x < 10 .447 .904

10 < x < 11 .447 .302

11 < x < 12 .447 0

12 <x 0 0

(c) Logarithmic Scoring System. If the same type of

limit operation carried out in the example above is applied

to the logarithmic scoring system we come out with merely

the following:

(3.5.5) f(x) - log r(x)

Applying 3.5.5 to the two distributions discussed in

the preceding example leads to the following table.

TRUE VALUE PAYOFF TO EXPERT J1 PAYOFF TO EXPERT #2

x < 7 -- --

7 < x < 8 -1.609 --

8 < x < 9 -1.609 - 1.609

9 < x < 10 - 1.609 - .511

10 < x < 11 - 1.609 - 1.609

11 < x < 12 - 1.609 -

12<x -- --

Note that this is the only case in which we get away

from the difficulty (if you consider it such) of giving
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different payoffs to experts who assess the same proba--

bility tor the outcome actually occurring.

I.

I,

r:U
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4. APPLICATIONS 1
4.1 Introduction

Reproducing scoring systems have been studied, mathe-

matically and in experimental exercises, for about fifteen

years now. Only recently, however, have they been used in

practical applications. In this section we will review

some of these applications and suggest how reproducing

scoring systems could be applied to improve political and

economic forecasting in Delphi-type procedures.

4.2 Testing Students

All of us have occasionally taken true-false tests

in which the instructor claimed to "count points off for

guessing." By this he usually meant that he awarded +1 for

a right answer and -1 for a wrong answer. Any student

soon realizes that this is not really penalizing guessing

at all, but rather that he will maximize his expected

score by putting down some answer to every question, even

if he thinks that the chance his answer is right is only

slightly greater than the chance that it is wrong. A stu-

dent putting down '"true" or "false" to a question has no

way of indicating his degree of uncertainty as to the

correctness of his answer. This in turn means that the

teacher who uses objective tests can only get an accurate

reading on the state of the class' knowledge by administering

rather long tests.
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It would seem reasonable to ipt- f-he _t-1 d-ntc =zrk a

question "true with probability .80" instead of requiring

them to say "true with probability 1.00" or "true with

probability 0." Indeed, the latter approach may be

subtly training students to tend toward extreme opinions.

The use of reproducing scoring systems offers a way of

inducing them to put down their true subjective feelings

about each question, and this should vastly increase the

amount of information which the teacher gets about a class

from a given set of questions.

This application has been vigorously championed by
20Shuford and Massengill and they have marketed materials

which enable teachers to understand and apply reproducing

scoring systems in the classroom without getting involved

in difficult computations. These techniques have been

applied in the Academic Instructors Course at Air Univer-

sity, and in pilot programs at the Air Force's Chanute Tech-

nical Training Center, the U.S. Army Signal Center and School

at Fort Monmouth, the Naval Service School Commands at

Great Lakes and at San Diego, and the Naval Air Basic

Training Comnand at Pensacola.17 Besides offering an im-

proved technique for written objective tests, reproducing

scoring systems offer a good method for predicting whether

a person can or cannot perform a given practical task 1 9 :

You simply ask him what he thinks the probability is that

he can successfully perform the task. You may then ask

I. ...I
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him to actually do it: If you do, then he is rewarded

(or penalized), whether he succeeds or fails, according

to tho probability of success he pLedicted. it is obvious-

ly not necessary to ask every student to perform every

task in order to induce them, in such a system, to give the

most realistic self-estimates of which they are capable.

Because these applications are so new, it will prob-

ably be some time before it is completely clear whether

they are in fact as advantageous as they appear to be in

theory. However a test or quiz is a communication device

between students and teacher; by modifying objective tests

in the way indicated in this section the channel capacity

of the conmunication device is increased and somehow this

must be a good thing.

4.3 Weather Forecasting

Meteorologists have, for some time, cast many of their

predictions in probabilistic terms, and the appropriateness

of this has been well recognized. 1 3 More recently, repro-

ducing scoring systems (or "proper scoring systems," as

10,25the meteorologists call them) have been proposed and

actually applied24 to the evaluation of such forecasts.

Reproducing scoring systems may be used, of course,

not only to compare the merits of different human forecasts,

but also to compare the quality of different mathematical

algorithms for preparing probabilistic forecasts, and for

comparing such mechanical forecasts with those made by

ii'
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f 1e h nn bl3 hu-cz bL . 24 in fact, the iogarithmic

scoring rule, when used to distinguish which of two prob-

abilistic models gives the better fit to the observed

data, is identical with the well-known maximum likelihood

criterion. 23

4.4 Delphi Processes

The "Delphi process" is a name which has been given

to a technique in which a group of individuals independently

estimate some quantity, and arrive at an improved estimate

by carefully controlled communication with one another. 3,4

There is no reason why the quantity they are attempting

to estimate should not be the probability of some future

event.

To be specific, let us envision the following means

of forecasting the news events of 197X. A panel of twenty

or more knowledgeable individuals is selected, and each

is asked to answer, without consulting the others, the

same set of questions about probable events during the

year. Some typical questions might be the following:

"What is the probability that North Korean forces will

desLroy or capture a United States intelligence vehicle

during the first six months of 197X?"

"What is the probability that at least one U.S. astro-

naut will be killed in line of duty during 197X?"

"How many RepubliLans will be elected to the House

of Representatives in November?
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There is a .01 chanrp nF loco -#htn-

"~ ."10 to of _

"o I 30 o it t

"It to 11 .30 to more "

to tt itw 0 J t .

.01 if #tOtIt it if

"What is the probability that the number of U.S.

troops in Vietnam on October 1 will be

less than 100,000?

Between 100,000 and 300,000?

of 300,000 it 400,000?

" 400,000 " 500,000?

" 500,000 of 600,000?

Over 600,000?

After the participants had made their various estimates, -

they might be given, say, the median estimate produced by

the group and individually asked if they would like to

change their estimate.

It would be explained to the participants that they

would each be paid for their efforts at the end of 197X,

and that this payment would be in proportion to their in-

dividual scores as calculated by an appropriate reproducing

scoring system. Enough money should be set aside to pay

them fees whose expected value would be adequate to justify

a good effort.

S" i i i ... .. 'i ...------ "----
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I

The results of such a survey might make an entertain-

ing thirty-minute TV news special; but would they be of

real help in solving any real-world problems? Would the
forecasts (or the "average" forecast) be more reliable

than forecasts derived by other methods? Would the fore-

casts improve significantly if such a survey was taken

year after year, with greater weight being given to the

seasoned experts who showed high accuracy in preceding

surveys? My inclination is to answer all of these

questions in the affirmative, but barring an actual trial

there is no way of answering any of them with assurance.
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5. POTENTIAL DIFFICULTIES

5.1 Irrationality

The concept of applying reproducing scoring systems

to the respondents in a Delphi panel is founded on the

notion that individuals generally behave "rationally" in

the sense that, under conditions of uncertainty, they will

act in such a way that they maximize their expected gains.

Unfortunately there is some evidence that this is not the

case.20 ,21  For example, when confronted with a choice

between gambles, some people will choose the one with the

highest probability of winning something rather than the

one with the highest expected payoff; others will choose

the gamble with the highest top prize regardless of how

remote the chance of winning it may be. It may be that

the sort of person we are apt to select for a Delphi panel

is not likely to behave in those "irrational" ways; but

if we do have the bad luck to find a large number of such

people on our panel then it is obvious that any reproducing

scoring system will have highly unpredictable effects. It

may provide the panel with incentives to exaggerate or

understate their true subjective probabilities, and the

resulting reports may thus turn out to be less meaningful

than if we had used no scoring system whatsoever.

To guard against such a possibility it would seem

wise, if a substantial number of panelists were not well-

known to you, to include certain questions on your Delphi
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questionnaire whose sole purpose would be to determinp if

the respondent was "rational" or not. Unfortunately such

questions would be, perforce, somewhat artificial-such as

"What is the probability that Army will kickoff at the

beginning of the Army-Navy game next fall?"

5.2 Unintended Payoffs

It is possible for a panel to be entirely "rational"

in the sense of the preceding section, and still give

distorted responses simply because the "expected gains"

which they are maximizing include factors which you have

neglected to consider. For example, the panelists might

have special interest in having you adopt a particular

point of view or course of action.

Indeed, the world of forecasting is today awash with

conflict of interest at all levels. Your family physician

predicts that if you let him perform a $3,000 operation

you will never be troubled with leg cramps again; your

lawyer predicts victory in litigation while collecting his

retainer; an Air Force general predicts victory in Vietnam

if we step up the bombing; an electronics firm predicts

marvelous bombing accuracies in five years if we spend

more on research and development; many research reports

(including this one) implicitly or explicitly predict high

payoffs from further research. The self-serving nature

of many prophecies is often obvious, but it is more danger-

ous when it is subtle and well hidden.
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It would be attractive to suppose that using a repro-

ducing scoring sivs-pm andn ni1,~rn& ,nawnvda

score would do away with the problem of conflict of in-

terest. Of course it would not. The president of an

electronics firm interested in building a new bomb-nay

system is going to predict high confidence in high per-

formance for the new system regardless of what kind of

explicit scoring system you apply to his prophecies, simply

because he has so much more to gain from getting the

contract than he has to gain from any payments you might

realistically make for accurate forecasting. Reproducing

scoring systems do make it possible to bring in whole

new groups of forecasters, individuals who ordinarily

would not bother to work out a forecast in a given area

because it does not directly affect their personal inter-

ests. Such people could be influenced by a properly

designed system to work out forecasts in which the conr-

pulsion of personal. interest was all toward as much accu-

racy as they are capable of. But it would be a mistake

to suppose that holding out one of the scoring systems

discussed in this paper to the same people who are now

producing self-serving forecasts would suddenly induce

them to produce unbiased forecasts in the future.

Another possible unintended payoff is similar to the

"Colonel Blotto" scoring system we discussed previously.

Suppose you set up a Delphi experiment with five

I F
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questions and a thousand participants, and announced that

you wudsesatequadraL.lu --

a-..ar. $ 1 ,nQ t+ ,.,hoever achieved the top score. This

does not constitute a reproducing scoring system. For

suppose each question was a two alternative forecast with

true probability of .50: Any participant who per-

ceived the true probabilities and reported them would, with

certainty, achieve a score of zero. On the other hand,

a crafty speculator who expresses "certainty" on all five

questions has one chance in thirty-two of making an un-

beatable score of 2.5. His expected score is -4, but

making a big negative score leaves him no worse off than

the cautious clunU who scores zero; the only thing that

matters is his chance of coming in first. To calculate

the true optimal policy in this system is a very complex

matter, since it is essentially a 1,000-person game we

are diacussing, but it is clearly not wise to make "honest"

forecasts.

N In actual cases, of course, the pressure toward ex-

treme forecasts caused by this top-dog syndrome is apt

to be considerably more subtle. For example, one of the

functions we have repeatedly stressed for scoring systems

is distinguishing good forecasters from poor ones. If

the members of your panel get the impression that the top

forecasters will get special recognition (more than just

a monetary award proportional to their score) this will
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introduce a distorting tendency into their forecasts.

Fi.n.l thcrz I %..; •L well-known nonlinear utility

of money. Twenty thousand dollars is "worth" less than

twice as much as ten thousand dollars. The conflict of

interest problem and the top-dog syndrome arguc in favor

of making the monetary award for accurate forecasting

substantial: But if you make the awards too substantial

you may find yourself in a situation where some of your

respondents become overcautious, and prefer to go for

small but relatively certain gains in preference to maxi-

mizing their expected gain through a riskier strategy.

5.3 Slow Discrimination

Reproducing scoring systems can indeed be used to

determine which of two probabilistic forecasters is the

more accurate, but it may take many trials before you can

place much confidence in this determination.

For example, suppose two experts are asked to predict

the probability of occurrence of n different events, and

each event has true probability one-half. Suppose expert

number one ascribes probability three-fifths to each event.

Suppose we are using a quadratic reproducing scoring system.

Let d(n) denote the difference between the first expert's

score and the second's (actually the first expert will,

if the scoring system is properly normalized, make zero

score, so -d(n) will be the second expert's score). The

quantity d(n) is a random variable; it may be either



positive or negative, but its mean is positive and the ¾I
ratio of its mean to its standard deviation may be calcu-

lat-ed to bc v-n/l0" This means that even after 100 pre-

dictions have been examined, there is still about one

chance in six that the second (less accurate) forecaster

will outscore the first. After 400 predictions the chance

of this happening is down to one in forty. A great many

forecasts, in other words, have to be evaluated before

you can place much confidence in the leading scorer being

truly the best forecaster.

In fact, it can be shown* that under any reproducing

scoring system whatsoever, if d(n) represents the differ-

ence after n trials between the score of an expert who

ascribed probability Y2 and one who ascribed probability y1

to each event (and the true probability is p), then

n [P Yl] < mean (d(n))
P(I-P) stand. dev. (d(n))<

En

Vpc-P [P Y2 ]1

From this we see that experts will be discriminated

more quickly if they are asked to forecast high probability

events than middling probability events, but that in any

case a fairly large number of forecasts are apt to be

required.

*See Appendix D.
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Appendix A

MONOTONICITY 11
FLet f be a reproducing scoring nystem on t,--- v--rlables.

Define

H(x, p) - pfl(x) + (l-p) fo(l-x)

H(x, p) is clearly the r.xpected payoff of an expert

assessing the probabIlity of an event as x when its true

probability is p.

THEOREM A: If p <x< ysry<x<p, then.

H(x, p) > H(y, p).

PROOF (Due to John Lindsey): By definition,

(A.1) xfl(x) + (1-x) fo(x) > xfl(y) + (l-x) fo(y)

(A.2) yfl(y) + (l-y) f 0 (y) > yfl(x),+ (I-y) f 0 (x)

Now assume p < x' y. Then

y-pa ----- >0
y-x

- > 0
y-X-
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Multiplying A.1 by a, A.2 by P, and adding, gives

us

(A.3) pfl(x) + (l-p) f 0 (x) > pfl(y) + (l-p) f 0 (y).

Which was to be proved. The same argument works for

y < x < p.

COROLLARY: fl(x) is a monotone increasing function

of x. fo(x) is a monotone decreasing function of x.

PROOF: fl(x) - H(x, 1). f 0 (x) - H(x, 0).
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Appendix B

NOrdUNIQUENESS OF Tp

In Sec. 3 we showed that any symmetric differen-

tiable reproducing scoring system on two alternatives f

could be put in the form

r ,r l-r
BWl(t) dt- L (t)dt + k cp(t)dt

B.I f(r)t - -

where p(l-t) -cp(t) (i.e., cp is symmetric about •). On

the other hand, we also showed that any function of the

form B.l is a symmetric reproducing scoring system if T

is positive, whether cp is symmetric about j or not. The

explanation for this seeming contradiction is that quite

different cp may give rise to the same f.

Direct computation shows that, if g(t) is any integ-

rable function, then

B.2 ¢(t) - t c •(1-t) T •(t)J

is a solution to the integral equation

r r 1-r

B .3 0 j~ t dt J (~d - -rSt

This is the most general solution, since if '(t) is

any solutiqn differentiation of B.3 shows that
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B.4 it -f T,-,/+-) - i/I- %_ I I"I I I -L T N-/ I \• - ý, .m 

I.J

Now let p(t) be any positive, integrable function

defined over [0,1]. Then

B.5 P I(t) - CP(t) + t[CP(1-t) - CP(t)]

is positive and symmetric and when plugged into B.- gives

exactly the same f as does cp.

!1

I~.
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_IAR NC] PROPERTY CHARACTERTZTNG
THE QUADIRATIC SCORING SYSTEM

It would seem desirable to find a symmetric reproducing

scoring system on two alternatives with the property that

an individual's expected reward would depend only on his

accuracy, and not upon the value of the true probability

of the event in question. A little reflection shows that

there can be no reproducing scoring system with this pro-

perty: We may assume the system normalized so that the

payoff for perfect accuracy when p, - P2 - } is zero.

Then the payoff for perfect accuracy when p1 -1, P2 = 0

must also be zero, so f(j) - f(l) - 0 which contradicts

the theorem of Appendix A (that f is monotone increasing).

Even though it is impossible to find a nontrivial

reproducing scoring system which makes an individual's

expected reward independent of p1 it is possible to find a

scheme which makes an individual's relative expected reward

(i.e., the difference between his reward and that expected

by a hypothetical perfect expert) depend only on p-r and

not on p. That is to say, the difference in expected re-

wards is only a function of the difference between the

individual's forecast and the true probability. To be more

specific, let us define E(r,p) to be the expected return of

an individual who ascribes probability r to an event whose

true probability is p. That is,

II
S• • • i ,• ,• ' i , ' "g ii i i " in i n nn nn n nn nn n n *1
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C.I E(r,p) - pf(r) + (l-p)f(l-r)

Now consider- th- qu.d.. atic reprod•c•ng Scingy

C.2 f(r) - 4r - 2r 2 _ 3 2(--r)

Simple calculation shows that

C.3 E(p,p) - E(r,p) - 2(p-r)

Thus the quadratic scoring system has the property

we desire; we will now demonstrate that it is essentially

the only scoring system which does.

THEOR: Let f(r) be a differentiable symetric

reproducing scoring system on two alternatives

which satisfies the following conditions:

(1) E(p,p) - E(r,p) is a function of (p-r).

(2) f(j) - 0.

(3) f(l) - 1.

Then

f(r) - 1 - 4(1-r)
2

PROOF: Let

C.4 E(p,p) - E(r,p) - h(p-r).



-49-

By Eq. (2) we see that E(j,p) -0, so

C.5n

Combining C.4 and C.5 we have

C.6 h(p-J) - h(p-r) E(r,p) - pfkr) + (l-p)f(l-r)

Let r - • + F, and divide both sides of C.6 by e,

and we find

C.7 h(p-) - h(p-j-c) . f(*-e) - f(J) +p [f (J+) f f(-E)]

Let e 0. The limit on the right-hand side exists

since f is differentiable; thus the limit on the left-

hand side exists and we have

C.8 h'(p-J) -'(J) (2 p-1).

We know h(O) - 0, and thus solving the differential

equation C.8 gives us

C.9 h(p-*) - f'(J) (p•)2

since
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C.10 h(½) - E(1,I) - E(•,].) - E(1,I) - f(1) - 1 *1
it follows that f'V() -4. Thus

2J

C. 11 h(y) - 4y2

since

C. 12 h(1-x) - E(1,1) - E(x,1) - 1 - f x)

we see at once that

C.13 f(x) - 1 - 4(1-x) 2

which concludes the proof. Note that we did not use f's

differentiability (or even continuity) except at the point

XI
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& Appendix D

BOUNDS ON DISCRIMINATION

One purpose of a reproducing scoring system is to

attempt to single out which experts (of a group) are the

most accurate in their estimates of the probability of

given events taking place. The rating system itself may,

of course, give ratings which are faulty due to "bad luck."

For example: if expert #1 predicts that a given fair coin

will come up heads on its next toss with probability .50,

while expert #2, not understanding that it is a fair coin,

fairly flipped, makes a prediction that it will certainly

come up heads, and the coin does come up heads, then any

of the rating schemes we have been discussing will iden-

tify expert #2 as the more accurate of the two. Over a

long series of flips, of course, expert #1 will expect to

surpass the total rating of expert #2 (providing the latter

continues to predict heads with certainty). In this sec-

tion we will discuss the probability that a reproducing

scoring system will fail (that is, that it will rate an

inaccurate expert more highly than an accurate one) over

a given set of predictions.

In general this probability will be a complex function

of the spectrum of true probabili.ties and estimates en-

compassed in the set of predictions under consideration.

For simplicity, we shall limit our consideration to two-

alternative symmetric scoritig systems, and assume that

)i



expert #1 and expert #2 estimate that the probability of

an event taking place as Yl and Y2, respectively, ard that

the true -robability of the event is p.Tf +-64 Q Q4 -i At4 rmf

recurs n times, what is ta-e probability that expert +1 will

have a higher total score than expert #2? Let d(n) denote

the difference between the total score of expert #1 and the

total score of expert #2 after n "trl.als." Of course d(n)

is a random variable. If it is pos"'eive, then #1 outscores

#2; if it is negative, then #2 outscores #1. It in easy

to calculate that

(D.1) mean (d(n)) - n fptf(yl) - f(y 2 )) + (l-p)f(ly-Yl) - f(l-Y2)1]

= n~f(l-Yl) f(l-Y2)1

+ nptf(y1 ) - f(y 2 ) - f(l-Yl) + f(1-y 2 ))

(D.2) variance (d(n)) -

np(l-p)(f(yl) - f(y 2 ) - f(l-yl) + f(l-Y2) 2

Let us assume that yl > Y2' so that

(D.3) [f(yl) - f(y 2 ) f(l-Yl) + f(l-y 2 )1 > 0.

Then, we have
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(D.4) mean (dn))

stand.~ dev. (d(n))____I

f(yl) -f(y 2)

f(l-y1 ) -f(l-y 2)

Let: cp be the symmetric function which (in equation B.1)

defines f. Then

f(yl) - f(Y2) Y2 t

f(1-Y1 ) - (l-y2) 1-ylcp(t)dt
j1 t

lY2

Yl (t)dt

Y2 It

By the mean value theorem

(D.6) 1 -yl ______ <jy cp(t)dt < IZ-f2 fl cp(tOdt
cpIt1dt t __ __ __ _
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Thus

(D.7) I Y2 < f.yl) -- ky2) Yl

-Y2 f(l-yl) - (l-y2) < -yl

!
Plugging inequality (D.7) into Eq. (D.4) gives

us

(D.8) 'p- rYl] < mean dn d/ n
"I lVpY stan d. dev. (d(n)) p(l-p) RY1

This inequality is useful because it does not contain

the particular reward function f. The absolute value of

the ratio of the mean to the standard deviation measures

how likely the rating scheme is to make a misrating. If n

is large enough that d(n) is approximately normal, then the

probability of misrating will be less than .025 if the

absolute value of the mean over the standard deviation is

greater than 2. One might imagine that it would be possible

to choose f so cleverly that this ratio would be large even

if n were not very great. Inequality (D.8) shows that no

matter what reproducing scoring system you choose, the ratio

will fall between certain limits. Looking at Eq. (D.6)

shows that an f which comes close to either limit is depen-

dent on the perticular y1 and Y2 involved, so it appears

that there will be no one scheme which is the best discrim-

inator.

[1
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We now suamarize the results above by statine them an
a theorem. -I

THEOREM: Let f be a symmetric, two-alternative,

differentiable, revroducLng scoring system. Let

d(n) represent the difference in scores after n

trials between an exoert who Predicts y, and an

expert who predictsY for an event whose true

Probability is p, Nb r Y2 < Yl; th

/n Mmean (d(n)) n-- --p-- [P-Yl] < -d i / n1P~lp)'P-ll stand. dev." (dn-Y) P(1 fP-Y2 ]"

From Eq. (D.4) we can calculate the ratio for

f(r) - 1 - 4(l-r) (the quadratic scoring system). It is

(D.9) mean (d(n)) n [p Y1 + Y2 jstand. dev. (d (n) ) " P( -p P.

Note that this is exactly half way between our theo-

retical upper and lower bounds.

! I
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